

FLAT MIRRORS

An extensive range of sophisticated diamond-cutting technologies is available, for single piece as well as for series production.

Technical data:

Typical dimensions

50 mm x 50 mm or 500 mm x 500 mm

50 mm up to 500 mm dia.

Surface figure

Approx. 0.1 μ m over100 mm*

Surface roughness

Ra approx. 1 nm - 5 nm*

Optionally coatings available.

Other specifications available on special order.

Custom dimensions available on special order.

- Oxygen-free copper (OFHC-CU)
- Aluminum
- Aluminum alloys (6082 and 6061 preferred)
- Brass
- Plastics (usually PMMA)
- Crystalline materials
- All nonferrous metals

^{*}Vary with the material involved and its structural rigidity.

SPHERICAL MIRRORS

An extensive range of sophisticated diamond-cutting technologies is available, for single piece as well as for series production.

Technical data:

Radii ranges

from approx. 5 mm to infinite

(concave or convex surfaces)

Typical dimensions

50 mm x 50 mm or 500 mm x 500 mm

50 mm up to 500 mm dia.

Surface figure

Approx. 0.1 μ m over 100 mm*

Surface roughness

Ra approx. 1 - 5 nm*

Other specifications available on special order.

Optionally coatings available.

*Vary with the material involved and its structural rigidity.

- Oxygen-free copper (OFHC-CU)
- Aluminum
- Aluminum alloys (6082 and 6061 preferred)
- Brass
- Plastics (usually PMMA)
- Crystalline materials
- All nonferrous metals

ASPHERICAL MIRRORS

Three-axes turning technology

Our advanced, three-axes turning technology allows us to turn optics having any symmetric geometric shape

An extensive range of sophisticated diamond-cutting technologies is available, for single piece as well as for series production.

Technical data:

Typical dimensions

on-axis Ø 50 mm up to Ø 500 mm

Surface figure

Approx. 0.5 μ m over 100 mm*

Surface roughness

Ra approx. 2 - 15 nm*

Optionally coatings available.

Other specifications available on special order.

Custom dimensions available on special order.

*Vary with the material involved and its structural rigidity.

- Oxygen-free copper (OFHC-CU)
- Aluminum
- Aluminum alloys (6082 and 6061 preferred)
- Brass
- Plastics (usually PMMA)
- Crystalline materials
- All nonferrous metals

POLYGON MIRRORS & SCANNERS

Raster-scanning polygons

We manufacture polygons having arbitrary pyramidal angles. We can also machine varying pyramidal angles on individual polygons.

Technical data:

Widths across flats

Approx. 10 mm to 500 mm

Surface figure

Approx. $\lambda/10$ in the visible spectral region

Machining tolerances*

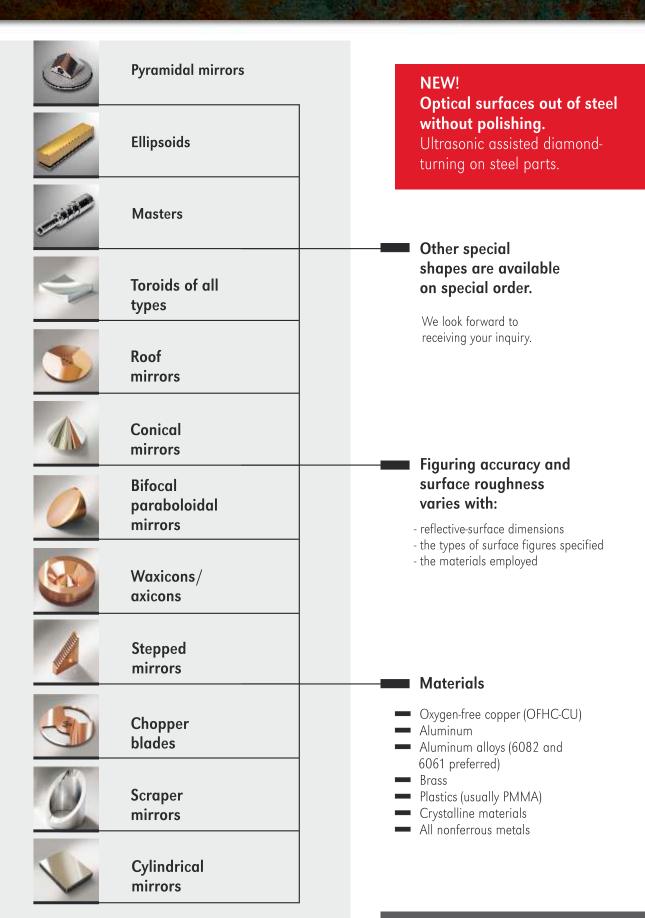
Indexing error, approx. 5 arcsec

Pyramidal error, approx. 5 arcsec

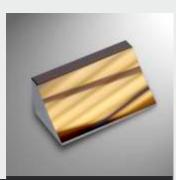
Surface roughness

Ra approx. 1 - 5 nm*

Optionally coatings available.


Other specifications available on special order.

Custom dimensions available on special order.


*Vary with the material involved and its structural rigidity.

- Oxygen-free copper (OFHC-CU)
- Aluminum
- Aluminum alloys (6082 and 6061 preferred)
- Brass
- Plastics (usually PMMA)
- Crystalline materials
- All nonferrous metals

SPECIAL OPTICS

UP-milling parts-

Technical data:

Axes stroke

X 900 mm / Y 350 mm / Z 200 mm

Surface figure and roughness

depending on design and dimension

Materials

- Oxygen-free copper (OFHC-CU)
- Aluminum
- Aluminum alloys (6082 and 6061 preferred)
- Brass
- Plastics (usually PMMA)
- Crystalline materialsAll nonferrous metals

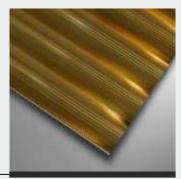
Micro milling

DYNAMIC-AXIS TECHNOLOGY

Freeform surfaces

With the dynamic-axis technology even non-rotationsymmetric geometries are possible

An extensive range of sophisticated diamond-cutting technologies is available, for single piece as well as for series production.



- Oxygen-free copper (OFHC-CU)
- Aluminum
- Aluminum alloys (6082 and 6061 preferred)
- Brass
- Plastics (usually PMMA)
- Crystalline materials
- All nonferrous metals

STRUCTURED OPTICS

Different types:

- Microlenses
- Grids
- Fresnel- optics
- **—** .

Manufacturing technologies:

- Diamond- turning
- Diamond- milling
- Diamond- planing
- Structure size down to submicron area

- Oxygen-free copper (OFHC-CU)
- Aluminum
- Aluminum alloys (6082 and 6061 preferred)
- Brass
- Plastics (usually PMMA)
- Crystalline materials
- All nonferrous metals

Coatings for CO₂-laser optics

		Reflectivity [%]				Phase
		$\lambda =$ 10,6 μ m HeNe			HeNe	Retardation
Coating type	Code	0°	45° (S)	45° (P)	45°	
Molybdenum	МО	97,7	98,2	96,6	~55	< 1°
Protected Gold	PG	99,0	99,2	97,2	~91	0 ± 3°
Unprotected Gold	AU	99,2	99,4	99,2	~90	0 ± 2°
Hard Gold	HG	98,8	98,7	97,5	~93	< 1°
Enhanced Coating	EC	99,6	99,2	99,15	~60	< 1°
Super-Enhanced Coating	SEC	99,8	99,9	99,7	~85	0 ± 1°
Phase-Retarding Coating	PRC	99,5	99,1	98,1	~70	90 ± 3°
Zero-Phase-Shift Coating	ZPC	99,8	99,9	99,6	~85	0 ± 2°

Other coatings

Enhanced Coating (YAG)	ECY	High-reflecting coating for use with Nd: YAG-lasers (1.064 μ m)
Protected Aluminum	PAL	Protected Aluminum coating primarily for use in the VIS and IR spectral regions*
Unprotected Aluminum	AL	Unprotected, pure-aluminum coating
Enhanced Aluminum	EAL	Provides enhanced reflectivity in the UV / VIS due to ist multi- layer dielectric overcoating*
Protected Silver	PAG	Silver with a protective dielectric overcoating*
SiO2	SiO2	Protective SiO2-overcoating
Yttrium Oxide	YO	Protective Yttrium Oxide overcoating

^{*} These coatings may be optimized for a specified wavelength range.

Aftholderberg, Wiesenstraße 9 Germany-88634 Herdwangen-Schönach Tel. +49 (0) 7552 / 40599-0 Fax +49 (0) 7552 / 40599-50

eMail: info@lt-ultra.com www.lt-ultra.com

